Oy ALt YA¢ O) yaynlt AEG ABs O
Lt 6A0?2yL el Et 6

{ 6ges3 Py
OYbFoY3rqdeoq saFbYqoFEFbLHY
Y o03qbveF saFb¥doqovod:

OFeoqQqdE AjE
OFédodEosodYy Egs¥Yda¥Ysqgaocl

aFakEgod E.

Software Control Systems

processor

- @ — D/A mr—> actuators |L—>

sensors [\

Memory buffer

Typical task structure

buffer

=—p <read data>

<process data>

<write datg>

buffer

<wait for next activation>

Activation modes

Periodic task (time driven) timer —— ’?

A task is automatically
activated by the kernel Task
at regular time intervals

Aperiodic task (event driven)

A task is activated upon event —
the arrival of an event
(interrupt or explicit activation)

Task
body

Complex control applications

e Hierarchical design
e Many periodic activities running a different rates

e Many event-driven routines

'

—
-

N N

Task scheduling

When more tasks are ready to execute, the order
of execution is decided by the scheduler:

READY queue

Importance of scheduling

It affects task response times
It affects delay and jitter in control loops

It affects execution times (preemptions destroy
cache data and prefetch queues)

It can be used to cope with overload conditions
It can be used to optimize resource usage

It can be used to save energy In processors
with voltage scaling (energy-aware scheduling)

Control design

Design of control laws

Y

Mapping to periodic tasks

Y

Schedulability analysis

No

Feasible?

Implementation

Run time monitoring

'

Meet No
constraints?

i Yes

Periodic Task Scheduling

We have n periodic tasks: {T1 T2 ... Tn}

relative absolute
7, (Ci, Ti, Di) period deadline deadline d,,
T; D
[« -l

& e 1T el

1 1 j >

ri1 = O Tik dix Tik+l t

Goal

= Execute all tasks within their = @+ (k=1) T;
deadlines

= Verify feasibility before runtime dix = rix + D;

Fixed-Priority Scheduling (FPS)

A This i1s the most widely used approach

i Each task has a fixed, static, priority which is
computed pre-run-time

A The runnable tasks are executed Iin the order

determined by their priority

A In real-time systems, the fpriority 0 of a task is
derived from its temporal requirements, not its
Importance to the correct functioning of the system
or Iits integrity

Earliest Deadline First (EDF)

A The runnable tasks are executed in the order
determined by the absolute deadlines of the tasks

A The next task to run being the one with the
shortest (nearest) deadline

A Although it is usual to know the relative deadlines
of each task (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described asdynamic

EDF ¢

EDF vs. RM Schedule

)
T S [
0 6 9o 1 15 1

3 2

RM «

S
o] — | —
) o 3 6 9 12 15 18
)
T1
0 3 6 9 12 15 18
S ISy S
\ 0o 3 6 9} 12 15 18

deadline miss

FPS v EDF

A FPS Is easier to Implement as priorities are static
A EDF Is dynamic and requires a more complex run

time system which will have

A |t IS easler to Incorporate tas
Into FPS; giving a task an ar
artificial

nigher over

nitrary deaco

nead

ks without deadlines

liIne Is more

A It Is easler to incorporate other factors into the
notion of priority than it is into the notion of deadline

FPS v EDF

A During overload situations

i FPS Is more predictable; Low priority process miss
their deadlines first

s EDF Is unpredictable; a domino effect can occur In
which a large number of processes miss deadlines

A But EDF gets more out of the processor!

Preemption

A With priority -based scheduling, a high-priority task may be
released during the execution of a lower priority one

In a preemptive scheme, there will be an immediate switch
to the higher -priority task

A With non-preemption, the lower -priority task will be allowed

to complete before the other executes

i Preemptive schemes enable higherpriority tasks to be

more reactive, and hence they are preferred

Scheduling Characteristics

A Sufficient T pass the test will meet deadlines
A Necessaryl fall the test will miss deadlines

A Exactl necessary and sufficient

A Sustainablel system stays schedulable if
conditions dmproveo

Simple Task Model

The application is assumed to consist of a fixed set of tasks
All tasks are periodic, with known periods
The tasks are completely independent of each other

All system's overheads, contextswitching times and so on
are ignored (i.e, assumed to have zero cost)

All tasks have a deadline equal to their period (that is, each
task must complete before it is next released)

All tasks have a fixed worst-case execution time

CcC 420 UvzZz"—"00Ow

Standard Notation

Worst-case blocking time for the task (if applicable)
Worst-case computation time (WCET) of the task
Deadline of the task

The interference time of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, jobs, (task period)
The utilization of each task (equal to C/T)

Rate Monotonic Priority Assignment

Each task is assigned a (unique) priority based on its
period; the shorter the period, the higher the priority

A l.e, fortwotasks | and |,

Ti<TjY Pj>Pj

A This assignment is optimal in the sense that if any task

set can be scheduled (using pre-emptive priority -based
scheduling) with a fixed -priority assignment scheme,
then the given task set can also be scheduled with a
rate monotonic assignment scheme

A Note, priority 1 is the lowest (least) priority

Example Priority Assignment

Process Period, T Priority, P
a 25 5
o) 60 3
C 42 4
d 105 1
e 75 2

Basic results

-

Independent tasks

Assumptions: -

\

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

‘underRM if Z% < nl2""-1)
i=1 '

1

under EDF If and only if

i [M]s
) | G
IA

\.

