
ȮȳȺȴȶȲȦȼȮȴȳȳȴ-ȹȵȶȦȨȱɅɄȿȮȫ ȷȮȷȸȫȲɁ
ȶȫȦȱɂȳȴȩȴ ȨȶȫȲȫȳȮ

ȱɋɐɜɎɥ 2:
ȪɎɓɆɒɎɝɋɗɐɔɋ ɕɑɆɓɎɖɔɈɆɓɎɋ ɈɡɝɎɗɑɋɓɎɏ

Ɏ ɔɜɋɓɐɆ ɕɑɆɓɎɖəɋɒɔɗɘɎ - 1

ȰɆɚɋɊɖɆ ȦȷȨȰ,
ȱɆɇɔɖɆɘɔɖɎɥ ȨɡɝɎɗɑɎɘɋɑɢɓɡɛ ȰɔɒɕɑɋɐɗɔɈ

ȧɆɑɆɞɔɈ Ȩ.Ȩ.

Fixed-Priority Scheduling (FPS)

Â This is the most widely used approach

Â Each task has a fixed, static, priority which is
computed pre-run-time

Â The runnable tasks are executed in the order
determined by their priority

Â In real-time systems, the ñpriorityòof a task is

derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity

Earliest Deadline First (EDF)

Â The runnable tasks are executed in the order
determined by the absolute deadlines of the tasks

Â The next task to run being the one with the
shortest (nearest) deadline

Â Although it is usual to know the relative deadlines
of each task (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described as dynamic

FPS v EDF

Â FPS is easier to implement as priorities are static

Â EDF is dynamic and requires a more complex run-
time system which will have higher overhead

Â It is easier to incorporate tasks without deadlines
into FPS; giving a task an arbitrary deadline is more
artificial

Â It is easier to incorporate other factors into the
notion of priority than it is into the notion of deadline

FPS v EDF

Â During overload situations

ü FPS is more predictable; Low priority process miss
their deadlines first

ü EDF is unpredictable; a domino effect can occur in
which a large number of processes miss deadlines

Â But EDF gets more out of the processor!

Preemption
Â With priority -based scheduling, a high-priority task may be

released during the execution of a lower priority one

Â In a preemptive scheme, there will be an immediate switch
to the higher -priority task

Â With non-preemption, the lower -priority task will be allowed
to complete before the other executes

Â Preemptive schemes enable higher-priority tasks to be
more reactive, and hence they are preferred

Scheduling Characteristics

Â Sufficient ïpass the test will meet deadlines

Â Necessary ïfail the test will miss deadlines

Â Exact ïnecessary and sufficient

Â Sustainable ïsystem stays schedulable if
conditions óimproveô

Simple Task Model

Â The application is assumed to consist of a fixed set of tasks

Â All tasks are periodic, with known periods

Â The tasks are completely independent of each other

Â All system's overheads, context-switching times and so on
are ignored (i.e, assumed to have zero cost)

Â All tasks have a deadline equal to their period (that is, each
task must complete before it is next released)

Â All tasks have a fixed worst-case execution time

Standard Notation
B

C

D

I

N

P

R

T

U

Worst-case blocking time for the task (if applicable)

Worst-case computation time (WCET) of the task

Deadline of the task

The interference time of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, jobs, (task period)

The utilization of each task (equal to C/T)

Rate Monotonic Priority Assignment

Â Each task is assigned a (unique) priority based on its
period; the shorter the period, the higher the priority

Â i.e, for two tasks i and j ,

Â This assignment is optimal in the sense that if any task
set can be scheduled (using pre-emptive priority -based
scheduling) with a fixed-priority assignment scheme,
then the given task set can also be scheduled with a
rate monotonic assignment scheme

Â Note, priority 1 is the lowest (least) priority

P jPiT jTi >Ý<

Example Priority Assignment

Process Period, T Priority, P

a 25 5

b 60 3

c 42 4

d 105 1

e 75 2

